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Abstract
An analytical model for thermal conductivity of composites with nanoparticles in a matrix is
developed based on the effective medium theory by introducing the intrinsic size effect of
thermal conductivity of nanoparticles and the interface thermal resistance effect between two
phases. The model predicts the percolation of thermal conductivity with the volume fraction
change of the second phase, and the percolation threshold depends on the size and the shape of
the nanoparticles. The theoretical predictions are in agreement with the experimental results.

(Some figures in this article are in colour only in the electronic version)

Nanocomposites have a wide range of applications in
the fields of optoelectronics, thermoelectrics, sensors, etc,
due to their novel structure and properties [1–3], such
as nonlinear optical properties of granular metal–dielectric
composites [2] and the large enhancement of effective thermal
conductivity of a fluid with the addition of a small amount
of carbon nanotubes [3]. With continuous miniaturization of
semiconductor and microelectronic devices, thermal transport
and heat management problems have begun to attract a
great deal of attention [4, 5]. Some devices such as
computer processors and integrated circuits need high thermal
conductivity, which is favorable for getting the heat away.
On the other hand, for thermal barriers and thermoelectric
devices, low thermal conductivity is desired. Studies have
found that thermal conductivity of nanowires and thin films
is size-dependent, it is lower than the corresponding bulk
value [6]. However, there are not many theoretical studies
on the thermal conductivity of nanocomposites, despite its
importance in applications [1, 3].

The effective medium theory (EMT) is often used
to study the physical properties of composites, such as
dielectric constant [2], thermal conductivity and electrical
conductivity [7]; the percolation of electrical conductivity is

usually found, but there are few reports on the percolation
of thermal conductivity. The role of interface thermal
resistance (ITR) in the thermal conductivity of nanocomposites
was emphasized in recent studies [8, 9], which improves
the theoretical results based on the EMT, but the related
work seems to be discussed only for the dilute limit [9].
Moreover, the intrinsic size effect of the thermal conductivity
of nanoscale structures was not considered for composites
based on the EMT. The study based on the Boltzmann transport
equation considered both the interface and the size effects,
but no percolation of thermal conductivity was found for
nanocomposites [8]. In this paper, a general theoretical model
about the effective thermal conductivity of nanocomposites in
the whole range of volume fractions of the second phases is
proposed based on the EMT by introducing both the intrinsic
size effect and the ITR effect. The model predicts the
percolation of the thermal conductivity for composites with
nanoparticles or nanorods of smaller size.

Based on quantum scattering theory and the Green’s
function perturbation method, considering a composite
medium whose thermal conductivity varies from point to point,
the thermal conductivity κ(r) corresponding to the point r
is expressed as a sum of a constant part of a homogeneous
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Table 1. The parameters in the model. In equation (4), D0 = 6h and 4h for nanoparticles and nanorods, respectively, α = 2Sv/(3R) + 1 and
Sv = Sm − R for semiconductors [15] with the melting entropy Sm = Hm/Tm, Hm the melting enthalpy and Tm the melting temperature.

κb

(W m−1 K−1)
[16]

h
(nm) [17]

Hm

(KJ mol−1)
[16]

Tm (K)
[16]

υ (m s−1)
[18]

C (106 J m−3 K−1)
[16]

ρ (g cm−3)
[16]

Si 148 0.3368 50.55 1685 2200 1.653 2.33
Ge 59.9 0.351 36.94 1210.4 5400 1.717 5.32

medium κ0 and an arbitrary fluctuating part κ ′(r). By using
the Green function G for the homogeneous medium defined
by κ0 and the scattering matrix T for the entire composite
medium (T = κ ′(r) + κ ′(r)GT = κ ′(r)(I + GT ) is related
to the perturbation κ ′(r) and G, I is the unit tensor) [7], a
rigorous solution for the temperature gradient distribution can
be obtained. The resulting effective thermal conductivity κe of
the composite is expressed as [7, 9]

κe = κ0 + 〈T 〉
I + 〈GT 〉 , (1)

where 〈 〉 represents spatial averaging, and 〈G〉 and 〈T 〉 are
related to the thermal conductivity, the concentration and the
geometry shape of each phase constituting the composite.
According to the multiple-scattering approach, the matrix T
is given as [7, 9]

T =
∑

Tn +
∑

m �=n

Tn GTm +
∑

l �=m �=n

Tn GTm GTl+ · · ·

∼=
∑

Tn =
∑ κ ′

n

I − Gκ ′
n

, (2)

where Tn is the T matrix of particle n, the first term on the right
of the first part of the equation is the sum of the T matrices of
all particles and the successive terms represent the interaction
among the particles (which is then neglected as a first-order
approximation, considering the difficulty of obtaining exact
solutions). κ ′

n corresponds to κ ′(r) of particle n. Substituting
equation (2) into equation (1), and taking κ0 to be the average
value of thermal conductivity of each phase constituting the
composite with the respective concentration weight, κe can
be obtained, which is the average t-matrix approximation [7].
According to the coherent potential approximation based on
the mean-field method, κ0 can also be chosen so that the
effect of the perturbation is as small as possible, κ0 = κe

and 〈T 〉 = 0 in the limit case, which is the self-consistent
EMT [7]. Both approaches improve the results of the first-
order approximation.

According to the self-consistent EMT, the effective
thermal conductivity κe of two-phase composites can be given
by

(1 − V2)
κ1 − κe

Lκ1 + (1 − L)κe
+ V2

κ2 − κe

Lκ2 + (1 − L)κe
= 0, (3)

where κ is the thermal conductivity, V the volume
fraction, the subscript 1 represents the matrix phase, 2 the
inclusion particles, L the depolarization factor related to the
geometry shape with T = κ ′/(1 + Lκ ′/κ0) and 〈κ ′〉 =∑

i=1,2 Viκ
′
i [7, 10]. Note that the composites discussed here

Figure 1. κe of porous Si. The symbols are experimental results [13],
while the curve is a prediction based on the model. In equation (3),
κ1 = 0.0262 W m−1 K−1 for air [14], κ2 for Si and for the related
parameters in equation (4) see table 1.

are isotropic and the particles are spherical, L = 1/3 for both
phases and each direction [7, 9]. Generally, Lx = L y =
p2/[2(p2 − 1)] − p/[2(p2 − 1)3/2] cosh−1 p with the aspect
ratio p = az/ax > 1 and the principal axis radii ax = ay < az ,
Lz = 1 − 2Lx , where the subscripts x , y and z denote
the three principal axes [9]. For example, Lx = 0.5 and
Lz = 0 for nanotubes with large p. Nan et al and Gao et al
[11] have explained well the increased thermal conductivity of
nanofluids with carbon nanotube filler using the EMT, although
the filler fraction is very small and the conductivity difference
between two phases is so large. For the inclusion particles in
nanoscale, the size effect of the nanoparticles should contribute
to the effective thermal conductivity of the composites. The
intrinsically size-dependent thermal conductivity of nanoscale
materials is given as

κ2

κ2b
=

[
exp

(
1 − α

D/D0 − 1

)]3/2

(4)

based on the kinetic formula of the bulk thermal conductivity
by introducing the intrinsic size effects of phonon velocity
and mean free path due to the phonon confinement [6], where
κ2b represents the bulk thermal conductivity of the second
phase inclusions, D the diameter of the nanoparticles, α =
2Sv/(3R) + 1 is a material constant related to the lattice
vibration with the vibrational entropy of melting Sv and the
ideal gas constant R [6, 12], D0 = 2(3 − f )h is a critical
size with atomic or molecular diameter h and the dimension
f = 0, 1 and 2 for nanoparticles, nanowires and thin films,
respectively [6, 12].
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Figure 2. κe of SiGe composites based on equations (3)–(6). (a) Ge particles with diameter D = 6, 10, 20 and 50 nm and the bulk,
respectively. In equation (3), κ1 for bulk Si, κ2 for Ge; in equation (6), d = 2 nm is assumed; the other related parameters are in table 1.
(b) Ge particles and rods with diameters D = 6 nm and different aspect ratios p = 1, 2 and 10. For rods, the length is 60 nm, p = 10,
L2x = L2y = 0.5 and L2z = 0, X = 1

(1+2d/D)2 in equation (5), and the sum of x and y directions is considered in equation (3),
∑

j=x,y,z (1 − V2/X)
κ1−κe

L1 j κ1+(1−L1 j )κe
+ ∑

j=x,y,z (V2/X) κc−κe
L2 j κc+(1−L2 j )κe

= 0, L1x,1y,1z = 1/3. The other calculation is the same as (a).

Figure 1 shows κe of porous Si by considering the intrinsic
size effect of Si nanoparticles and substituting equation (4) into
equation (3). The porous Si is considered as a composite of
the pores (air) and the Si particles. D = 8.5 nm is taken in
equation (4) since the size range of Si particles is 8.5–13 nm
in the experiment [13], and there is no obvious difference
among the calculated results in this size range. It can be seen
from the figure that the prediction agrees with the experimental
result in the tendency: κe decreases nonlinearly with increasing
porosity, when the porous fraction increases to about 0.7, κe

is notably smaller and the rate of decrease becomes slower,
the porous Si is almost a thermal insulator, and κe shows the
percolation, i.e. the abrupt transition of the system’s property
from the conduction to the insulation state. Note that, when
the porosity is larger than 0.7, the experimental data are larger
than the theoretical predictions. The reason may be that the
fabrication of porous Si with the higher porosity (>0.75) was
related to the oxidation of the porous Si with the lower porosity
and the subsequent removing of the oxide. In the process the
plastic deformation of the Si particles occurred, which induced
the increased conduction percolation strength [13].

On the other hand, the interface thermal resistance
between two phases, especially two solid phases, should
contribute to the effective thermal conductivity of the
composites, but this interface effect is not included in
equation (3). Therefore, we further assume that there is a
interface layer between two phases, and take the inclusion
particle with the interface layer as a composite unit. Then we
replace κ2 by the thermal conductivity κc of the composite unit
in equation (3) and replace V2 by the effective volume fraction
V2/X of the composite unit in the equation, so the interface
effect can be included by introducing the interface layer, where
X = 1

(1+2d/D)3 is the interface ratio factor and d is the thickness
of the interface layer [7]. The thermal conductivity κc of the
composite unit is expressed as

κc = κl
2κl + κ2 + 2X (κ2 − κl)

2κl + κ2 − X (κ2 − κl)
(5)

based on the average t-matrix approximation by taking the
interface layer as phase 1 and the particle as phase 2, where κl

is the thermal conductivity of the interface layer and X reflects
the volume fraction of the particle in the composite unit. κl can
be calculated by multiplying the interface thermal conductance
G by d , G = tυC

4 , t is the interfacial phonon transmission
coefficient, and υ and C the average phonon velocity and the
specific heat of two phases, respectively [19]. Therefore,

κl = Gd = tυCd

4
. (6)

The interfacial phonon transmission can be calculated
based on the acoustic mismatch model, t = 4Z1 Z2

(Z1+Z2)
2 ,

where Z = ρυ is the acoustic impedance and ρ is the
mass density [4, 20]. Note that, although the interface
scattering term is not included in equation (4), the interface
thermal resistance effect is included in equations (6) and (5),
and there is no obvious difference in the obtained interface
resistance values between the diffusive mismatch model
(scattering limit) and the acoustic mismatch model for solid–
solid interfaces [20].

Substituting equations (4) and (6) into equation (5),
respectively, then equation (5) into equation (3), the thermal
conductivity of composites can be calculated by considering
both the size and the interface effects. Figure 2(a) shows
κe of the composites with Ge nanoparticles dispersed in an
Si matrix. It can be found that κe decreases with increasing
fraction V2 and the reducing size D of Ge particles, which is
reasonable since the thermal conductivity of Ge is lower than
that of Si and κ2 decreases with the reducing D in terms of
equation (4). Moreover, the nonlinear behavior of κe becomes
obvious with the reducing D of Ge; when D < 10 nm, the
percolation behavior appears, i.e. when V2 increases to a
certain fraction corresponding to the percolation threshold (the
volume fraction at which the abrupt transition of the system’s
property occurs), κe becomes very low and the composites
become almost thermal insulators due to the large contribution
of the smaller-sized Ge with low thermal conductivity. Also
the percolation threshold decreases with the reducing size of
Ge nanoparticles. Figure 2(b) shows the effect of the aspect
ratio of Ge nanofillers. It can be seen that κe increases with
the increasing aspect ratio of Ge at the same volume fraction
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Figure 3. The same calculation as in figure 2(a) except for the
exchange of roles of Si and Ge in the equations. The star denoting κe

for Si80Ge20 and the cross for Si20Ge80 with Si particles of 100 nm
are marked to compare with the experimental results [21].

and the same diameter, which is reasonable since the volume
of a nanorod with the larger aspect ratio is larger than that
of a nanoparticle with the same diameter, the number of
nanorods is smaller than that of nanoparticles with the same
volume fraction and the contribution to the decrease of thermal
conductivity of the bulk Si matrix from Ge nanorod fillers
is smaller than that from the nanoparticle fillers. Also the
percolation threshold increases with the increasing aspect ratio
of nanofillers. Note that κe of composites with nanofillers of
the aspect ratio larger than one may be anisotropic depending
on the orientation distribution of the nanofillers in the matrix.
The randomly oriented nanorod filler is discussed here simply.

Figure 3 shows how κe of the composites with Si
nanoparticles in a Ge matrix changes with the fraction V2

and the size D of Si, which is different from that for Ge
nanoparticles in Si. Although the thermal conductivity still
decreases with the reducing D of Si, κe does not always
increase with the increasing fraction of Si, which depends on
the size of Si. Only for the composites with Si particles larger
than about 280 nm does κe increase with increasing V2 due to
the higher thermal conductivity of the large-sized Si compared
to Ge. For Si particles with D < 280 nm, κe decreases
with the increasing fraction of Si, which is in agreement with
the experimental result: the thermal conductivity of Si80Ge20

nanocomposites with Si particles of 100 nm is lower than that
of Si20Ge80 with the same-sized Si nanoparticles [21].

In conclusion, a simple model of thermal conductivity
of nanocomposites is established. The model predicts the
percolation of thermal conductivity for the composites with the
smaller-sized nanoparticles or nanorods in a bulk matrix and
for the nanoporous medium, which is understandable since the
thermal conductivity of the smaller-sized nanofillers or air is
very low and the difference between two phases constituting
the composites is large. It can be deduced that if two phases
of composites are both in nanoscale or the difference between
two phases is small, the percolation behavior will weaken.
Nevertheless, the percolation behavior can appear not only in
electrical transport but also in heat transport, depending on

the corresponding conduction network formation determined
by the structure of the composites. The model gives a
general guide for the fabrication and the application related to
heat problems by designing the constituent, the size, and the
structure of nanocomposites.

Acknowledgments

The work is supported by grants partly from the Faculty
Research Grant of NUS, partly from the Chinese Academy of
Sciences through grant KJCX2-YW-M04 and from the NSFC
through grant nos. 10721202 and 10432050.

References

[1] Venkatasubramanian R, Siivola E, Colpitts T and
O’Quinn B 2001 Nature 413 597

Costescu R M, Chill D G, Fabreguette F H, Sechrist Z A and
George S M 2004 Science 303 989

[2] Gao L, Jones T K W, Yu K W and Li Z Y 2000 J. Phys.:
Condens. Matter 12 6825

Gao L, Yu K W, Li Z Y and Hu B 2001 Phys. Rev. E 64 036615
[3] Choi S U S, Zhang Z G, Yu W, Lockwood F E and Grulke E A

2001 Appl. Phys. Lett. 79 2252
Biercuk M J, Llaguno M C, Radosavljevic M, Hyun J K,

Johnson A T and Fisher J E 2002 Appl. Phys. Lett. 80 2767
[4] Cahill D G, Ford W K, Goodson K E, Mahan G D,

Majumdar A, Maris H J, Merlin R and Phillpot S R 2003
J. Appl. Phys. 93 793

[5] Au Yeung T C, Chiam T C, Sun C Q, Gu M, Shangguan W Z
and Kam C H 2005 J. Appl. Phys. 98 113707

Au Yeung T C, Gu M X, Sun C Q, Chen G C K,
Wong D W K and Nosik V 2006 Phys. Rev. B 74 155317

Yu B and Li B 2006 Phys. Rev. E 73 066302
[6] Liang L H and Li B 2006 Phys. Rev. B 73 153303 and

references therein
[7] Nan C W 1993 Prog. Mater. Sci. 37 1
[8] Yang R-G, Chen G and Dresselhaus M S 2005 Phys. Rev. B

72 125418
Tian W-X and Yang R-G 2007 Appl. Phys. Lett. 9 263105

[9] Nan C W, Birringer R, Clarke D R and Gleiter H 1997
J. Appl. Phys. 81 6692

[10] Hori M 1977 J. Math. Phys. 18 487
[11] Nan C W, Shi Z and Lin Y 2003 Chem. Phys. Lett. 375 666

Gao L, Zhou X F and Ding Y L 2007 Chem. Phys. Lett.
434 297

[12] Shi F G 1994 J. Mater. Res. 5 1307
Jiang Q, Shi H X and Zhao M 1999 J. Chem. Phys. 111 2176

[13] Chantrenne P and Lysenko V 2005 Phys. Rev. B 72 035318
[14] Lide D R 2004-2005 Handbook of Chemistry and Physics 85th

edn (Boca Raton, FL: Chemical Rubber Company) pp 6–212
[15] Zhang Z, Zhang M and Jiang Q 2001 Semicond. Sci. Technol.

16 L33
[16] Periodic Table of the Elements 1980 (Skokie, IL:

Sargent-Welch Scientific Company) p 1
[17] King H W 1983 Physical Metallurgy 3rd edn, ed R W Cahn and

P Haasen (Amsterdam: North-Holland) pp 63–5
[18] Winter M 1993-2006 WebElements, the Periodic Table on the

WWW (Sheffield: The University of Sheffield and
WebElements Ltd)

[19] Chen Y-F, Li D-Y, Yang J-K, Wu Y-H, Lukes J R and
Majumdar A 2004 Physica B 349 270

[20] Khalatnikov I M 1952 Zh. Eksp. Teor. Fiz. 22 687
Swartz E T and Pohl R O 1989 Rev. Mod. Phys. 61 605

[21] Lee H 2005 Experimental study of thermal conductivity
reduction of silicon–germanium nanocomposites for
thermoelectric application Master Thesis Massachusetts
Institute of Technology p 57

4

http://dx.doi.org/10.1038/35098012
http://dx.doi.org/10.1126/science.1093711
http://dx.doi.org/10.1088/0953-8984/12/30/311
http://dx.doi.org/10.1103/PhysRevE.64.036615
http://dx.doi.org/10.1063/1.1408272
http://dx.doi.org/10.1063/1.1469696
http://dx.doi.org/10.1063/1.1524305
http://dx.doi.org/10.1063/1.2139833
http://dx.doi.org/10.1103/PhysRevB.74.155317
http://dx.doi.org/10.1103/PhysRevE.73.066302
http://dx.doi.org/10.1103/PhysRevB.73.153303
http://dx.doi.org/10.1016/0079-6425(93)90004-5
http://dx.doi.org/10.1103/PhysRevB.72.125418
http://dx.doi.org/10.1063/1.2751610
http://dx.doi.org/10.1063/1.365209
http://dx.doi.org/10.1063/1.523293
http://dx.doi.org/10.1016/S0009-2614(03)00956-4
http://dx.doi.org/10.1016/j.cplett.2006.12.036
http://dx.doi.org/10.1557/JMR.1994.1307
http://dx.doi.org/10.1063/1.479489
http://dx.doi.org/10.1103/PhysRevB.72.035318
http://dx.doi.org/10.1088/0268-1242/16/6/101
http://dx.doi.org/10.1016/j.physb.2004.03.247
http://dx.doi.org/10.1103/RevModPhys.61.605

	Acknowledgments
	References

